

Calculation of Q of Catchment Areas

Curculation	Q =	u	0.278 C i A	4				
		T	С	i (mm/hr)	A (m ²)	() (lit/min)		
	Catchment Area	1	0.95	250	692	2741		
	Catchment Area	2	0.95	250	320	1268		
	Catchment Area	3	0.95	250	539	2135		
	Catchment Area	4	0.95	250	344	1363		
	Catchment Area	5	0.95	250	615	2436		
	Catchment Area	6	0.95	250	1376	5451		
<u>Design Dr</u>	ain in the right portion of Q = =	of : = =	Lot 24 Catchment <u>4877</u>	Area 1 + Ca lit/min Provide 300	utchment A UC (1:150	rea 3) is OK		
Design Drain in Lot 23 Q = Catchment Area 2 + Catchment Area 4 = 2630 lit/min Provide 225UC (1:100) is OK								
Design Drain in the left portion of Lot 24 Q = Catchment Area 1 + Catchment Area 3 + Catchment Area 5 = <u>7313</u> lit/min Provide 375UC (1:100) is OK								
<u>Design Dr</u>	r <u>ain in Lot 35 (except Cl</u> Q = =	<u>P5</u> =	to CP9) Catchment <u>5451</u>	Area 6 lit/min Provide 300	<u>JC (1:150</u>	<u>) is OK</u>		
Design Dr	r <u>ain between CP5 to CP9</u> Q = =	<u>9</u> =	Catchment 15394	Area (1+2+3 lit/min Provide 3751	3+4+5+6) <u>UC (1:100</u>	<u>) is OK</u>		

Design Drain between	CP3 and	CP:	<u>5</u>			
	Q	=	Catchment Area 1 + C	Catchment A	Area 3 + Catcl	hment Area 5
		=	<u>7313</u> lit/min			
Manning Equation	V	=	$R^{2/3}*S_f^{0.5}/n$			
where	R	=	π r ² /2 π r		d=	0.375 m
		=	r/2		r=	0.1875 m
		=	0.09	m		
	n	=	0.012	s/m ^{1/3}	(Table 13 of	Stormwater Drainage Manual)
1/ 100	S_{f}	=	0.0100			
Therefore,	V	=	0.09 ^{2/3} *0.01 ^{0.5} /0.012			
		=	1.72	m/sec		
			0.01771.1		(0 0 0	
Maximum Capacity ((Q_{max})	=	0.9*V*A		(0.9 factor is)	s adopted for Sedimentation)
		=	$0.9*1.72* \pi r^2$			
		=	0.171	m ³ /sec		
1 nos of pipe		=	0.171	m ³ /sec		
			10257	lit/min		
		>	7313	lit/min		
			Provide 375 under	oround nin	e (1·100) is O	ĸ
			<u>1107100 575 undor</u>		0 (1.100/ 10 0	
		-	/ · · · · · · · · · · · · · · · · · · ·			
Design Drain between	CPS to C	<u></u>	(pipe final outfall)	. 2 . 4 . 5 . 6		
	Q	=	15204 lit/min	+3+4+3+0)		
		-	<u>13374</u> 11/11111			
Manning Fauation	V	=	$P^{2/3} * S^{0.5} / m$			
Manning Equation	·		K Of /II			
where	R	=	$\pi r^2 / 2 \pi r$		d=	0.45 m
		=	r/?		r=	0.225 m
		=	0.11	m	1	0.223 m
	n	=	0.012	s/m ^{1/3}	(Table 13 of	Stormwater Drainage Manual)
1/ 100	S_{f}	=	0.0100			
Therefore,	V	=	0.09 ^{2/3} *0.0067 ^{0.5} /0.012	2		
		=	1.94	m/sec		
Maximum Capacity	(Q _{max})	=	0.9*V*A		(0.9 factor is	s adopted for Sedimentation)
		=	$0.9*1.40*\pi r^2$			
		=	0.278	m ³ /sec		
1 nos of nine		_	0.278	m^{3}/s_{22}		
1 1103 01 pipe		_	16670	lit/min		
		->	15394	lit/min		
		-	D. 11 470 1	1 •	(1 100) !	17
Provide 450 underground pipe (1:100) is OK						

ALTERNATIVE TOP SECTION FOR PRECAST CONCRETE COVERS / GRATINGS

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETRES.
- 2. ALL CONCRETE SHALL BE GRADE 20 /20.
- 3. CONCRETE SURFACE FINISH SHALL BE CLASS U2 OR F2 AS APPROPRIATE.
- 4. FOR DETAILS OF JOINT, REFER TO STD. DRG. NO. C2413.
- 5. CONCRETE TO BE COLOURED AS SPECIFIED.
- UNLESS REQUESTED BY THE MAINTENANCE PARTY AND AS DIRECTED BY THE ENGINEER, CATCHPIT WITH TRAP IS NORMALLY NOT PREFERRED DUE TO PONDING PROBLEM.
- 7. UPON THE REQUEST FROM MAINTENANCE PARTY, DRAIN PIPES AT CATCHPIT BASE CAN BE USED BUT THIS IS FOR CATCHPITS LOCATED AT SLOPE TOE ONLY AND AS DIRECTED BY THE ENGINEER.
- 8. FOR CATCHPITS CONSTRUCTED ON OR ADJACENT TO A FOOTPATH, STEEL GRATINGS (SEE DETAIL 'A' ON STD. DRG. NO. C2405) OR CONCRETE COVERS (SEE STD. DRG. NO. C2407) SHALL BE PROVIDED AS DIRECTED BY THE ENGINEER.
- 9. IF INSTRUCTED BY THE ENGINEER, HANDRAILING (SEE DETAIL 'G' ON STD. DRG. NO. C2405; EXCEPT ON THE UPSLOPE SIDE) IN LIEU OF STEEL GRATINGS OR CONCRETE COVERS CAN BE ACCEPTED AS AN ALTERNATIVE SAFETY MEASURE FOR CATCHPITS NOT ON A FOOTPATH NOR ADJACENT TO IT. TOP OF THE HANDRAILING SHALL BE 1 000 mm MIN. MEASURED FROM THE ADJACENT GROUND LEVEL.
- 10. MINIMUM INTERNAL CATCHPIT WIDTH SHALL BE 1 000 mm FOR CATCHPITS WITH A HEIGHT EXCEEDING 1 000 mm MEASURED FROM THE INVERT LEVEL TO THE ADJACENT GROUND LEVEL. AND, STEP IRONS (SEE DSD STD. DRG. NO. DS1043) AT 300 ¢ STAGGERED SHALL BE PROVIDED. THICKNESS OF CATCHPIT WALL FOR INSTALLATION OF STEP IRONS SHALL BE INCREASED TO 150 mm.
- 11. FOR RETROFITTING AN EXISTING CATCHPIT WITH STEEL GRATING, SEE DETAIL 'F' ON STD. DRG. NO. C2405.
- 12. SUBJECT TO THE APPROVAL OF THE ENGINEER, OTHER MATERIALS CAN ALSO BE USED AS COVERS / GRATINGS.

	– FORMER DRG.	. NO. C2406J. Original Signed 03.2015				
	REF. F	REVISION SIGNATURE DATE				
CATCHPIT WITH TRAP	CEDD CI DEV	CIVIL ENGINEERING AND DEVELOPMENT DEPARTMENT				
(CHEET 2 OF 2)	SCALE 1:20	DRAWING NO.				
(SIILLI Z OI Z)	DATE JAN 19	091 C2406 /2				
卓越工程 建設香港	We Enginee	We Engineer Hong Kong's Development				

Figure 8.10 - Typical Details of Catchpits

Figure 8.11 - Typical U-channel Details